Structural Systematics in the Binary System $\mathrm{Ta}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3} . \mathrm{V}$. The Structure of the Low-Temperature Form of Tantalum Oxide L - $\mathrm{Ta}_{2} \mathrm{O}_{5}$

By N.C.Stephenson* and R.S. Roth
National Bureau of Standards, Washington, D. C. 20234, USA

(Received 9 March 1970 and in revised form 27 July 1970)

Abstract

The orthogonal unit cell of the compound $L-\mathrm{Ta}_{2} \mathrm{O}_{5}$ has dimensions $a=6 \cdot 198, b=40 \cdot 29, c=3 \cdot 888 \AA$ and contains 11 formula units. The structure was solved in projection from the Patterson function and refined to a conventional R value of 0.088 using full-matrix least-squares methods. The metal atoms are arranged in sheets and are surrounded by oxygen atoms which form either distorted octahedral or pentagonal bipyramidal coordination polyhedra. The structure contains, on the average, three distortion planes per unit cell. These are statistically distributed over four sites, thereby giving the average,unit cell a higher symmetry than the real unit cell. The thermal equilibration of the compound, involving detectable structural changes, is discussed in terms of the migration of distortion planes.

Introduction

Pure $\mathrm{Ta}_{2} \mathrm{O}_{5}$ has at least two structurally distinct polymorphs, with a reversible phase transition occurring at about $1360^{\circ} \mathrm{C}$. The high-temperature form was first reported by Lagergren \& Magnéli (1952) and was shown to undergo several small symmetry changes when heated and cooled (Laves \& Petter, 1964 ; Waring \& Roth, 1968). A large number of X-ray diffraction powder patterns of the low-temperature form of $\mathrm{Ta}_{2} \mathrm{O}_{5}$ have been published. Although all the published patterns are similar with respect to the strong (substructure) lines, there is little or no agreement as to the positions of the weaker (superstructure) lines. Moser (1965) has divided the low temperature form into four subdivisions based on the position of one of the more sensitive superstructure peaks called the C line. Roth \& Waring (1971) have shown that the variable position of the superstructure lines depends on the exact nature of the heat treatment and is, at least partially, reversible and therefore represents an equilibrium condition. Under heat treatment the C line was found to move from lower to higher d values with increasing temperature with the largest value occurring only when the specimen had been quenched from just below or (for heat treatments of short deviation) from just above the phase transition temperature. Very small single crystals of $\mathrm{Ta}_{2} \mathrm{O}_{5}$ have been prepared in this structure type (with the C line at the largest possible d spacing) by successive heating of a specimen at $1700^{\circ} \mathrm{C}$ for 20 hours, $1225^{\circ} \mathrm{C}$ for two weeks, $1325^{\circ} \mathrm{C}$ for two weeks and $1350^{\circ} \mathrm{C}$ for two weeks, with quenching to room temperature after each heat treatment.

Lehovic (1964) described the structure of the tantalum oxide subcell with the tantalum atoms near positions ($000, \frac{11}{22} 0$), two oxygen atoms at about ($00 \frac{1}{2}, \frac{1}{2} \frac{1}{2} \frac{1}{2}$)

[^0]and the other three oxygen atoms in the same plane as the tantalum atoms. The positions of these latter three oxygens in the (001) plane were described as 'uncertain'.

Experimental

Crystals of $L-\mathrm{Ta}_{2} \mathrm{O}_{5}$ were smaller than any previously examined in the $\mathrm{Ta}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3}$ system. A crystal, larger than average, was eventually mounted on a fibre of glass wool and oriented about the a axis. This crystal, which was near spherical in shape with an average radius of 0.010 mm , was used to collect data on a General Electric single-crystal orienter. Unit-cell dimensions were obtained using a Philips powder diffractometer with $\mathrm{Cu} K \alpha$ radiation. The crystal data are : $L-\mathrm{Ta}_{2} \mathrm{O}_{5}, \quad M=441 \cdot 75 ; \quad a=6 \cdot 198$ (5), $\quad b=40 \cdot 290$ (33), $c=3.888(5) \AA ; V=970 \cdot 9 \AA^{3}, Z=11, D_{c}=8.31 \mathrm{~g} . \mathrm{cm}^{-3}$.

Intensities were measured by the 2θ-scan method using Mo $K \alpha$ radiation. Because of the large b axis dimension it was necessary to critically determine the smallest scan range that still completely covered each reflection and also to use a 0.2° slit immediately in front of the scintillation counter window to minimize peak overlap. The orientation of the crystal was such that the slit was used in a horizontal position, i.e. in the equatorial plane of the diffractometer. The rate of scanning was $1^{\circ} \cdot \mathrm{min}^{-1}$ and the scan range (SR) was calculated using the equation $\mathrm{SR}=1.5+0.8$ tan θ. The backgrounds were measured for 60 seconds at $2 \theta \pm \frac{1}{2} \mathrm{SR}$. The intensities of three standard reflections, measured periodically with the data, were found to hold constant to within 5%. A standard deviation (σ) was calculated for each intensity and if the net number of counts did not exceed 2σ the reflection was considered as a 'less than' and its intensity was set equal to 2σ. In the 2θ angle range $0-100^{\circ}$ a unique set of 938 $h k 0$ reflections was recorded, of which 686 were labelled as 'less thans'. Lorentz-polarization but not absorption corrections ($\mu R=0.65$) were applied to

[^1]
Determination and refinement of the structure

The determination of the structure of $L-\mathrm{Ta}_{2} \mathrm{O}_{5}$ was similar to that of $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ (Stephenson \& Roth,

Table 1. Observed and calculated structure factors.
Unobserved data are marked with L .

* N.

$$
\begin{array}{ll}
3 & 4 \\
3 & 5 \\
3 & 3 \\
3 &
\end{array}
$$

$$
\begin{array}{lll}
1 & 0 & 1 \\
5 & 0 & 1 \\
3 & 0 & 1 \\
3 & 0 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}
$$

1	5
15	
30	
3	

1971a). The identical appearance of zero and upper level Weissenberg photographs taken about c indicated that atoms were to be found predominantly in the (001) planes. However, the Laue symmetry and systematic absences in spectra indicated space groups that could not be used to successfully interpret the Patterson function. It was therefore decided to solve the structure in projection using the small number of rectangular primitive plane groups. As with the $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ structure, the plane groups that permitted a satisfactory refinement of the metal atom positions were $p m$ and $p g$, and the structure of the asymmetric unit ($a \times b / 2 \times c$) was found to be virtually the same for either plane group $p m$ or $p g$.

Refinement was carried out in the plane group pm.

Positional and thermal parameters were varied in the full-matrix least-squares cycles for all atoms other than those oxygen atoms which projected onto metal atoms. Positional parameters for these atoms remained at the values determined from difference Fourier syntheses, and an isotropic temperature factor, $B=0.7 \mathrm{~A}^{2}$, was assigned on the basis of the average of the remaining oxygen temperature factors. Justification for anisotropic thermal parameters for the metal atoms only was obtained from the appearance of difference Fourier syntheses and by the use of statistical tests (Hamilton, 1965).

Standard deviations, σF_{o}, were assigned to F_{o} data on the basis of counting statistics and a weighting scheme was used (Stephenson \& Roth, 1971a) to

Table 2. Positional and thermal parameters for the compound $L-\mathrm{Ta}_{2} \mathrm{O}_{5}$
Standard deviations are given in brackets and the form of the anisotropic thermal ellipsoids is $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+2 \beta_{12} h\right)\right]$. Atoms $O(17)$ to $O(28)$ have z parameters of $\frac{1}{2}$; the remaining atoms have z parameters of zero. Oxygen atoms $O(5), O(30), O(31)$ and $O(33)$ have population parameters of 0.25 while $O(29)$ and $O(32)$ have population parameters of 0.75 .

	x / a	y / b	$\begin{aligned} & \beta_{11} \times 10^{4} \\ & \text { or } B \end{aligned}$	$\beta_{22} \times 10^{5}$	$\beta_{12} \times 10^{5}$
M(1)	0.0000	0.0000	-34 (6)	4 (2)	0
M(2)	0.6784 (15)	$0 \cdot 5000$	60 (13)	20 (4)	0
M(3)	0.0655 (12)	0.08622 (16)	91 (11)	2 (2)	-58(14)
M(4)	0.0558 (9)	$0 \cdot 18372$ (14)	44 (7)	8 (2)	-6 (9)
M(5)	0.0674 (12)	0.27489 (18)	80 (11)	9 (2)	-6(13)
M(6)	$0 \cdot 1610$ (11)	$0 \cdot 36266$ (20)	69 (10)	20 (3)	72 (12)
M(7)	$0 \cdot 1094$ (12)	$0 \cdot 45071$ (29)	122 (17)	38 (5)	176 (23)
M(8)	$0 \cdot 5917$ (13)	0.41238 (23)	64 (9)	21 (3)	-79 (14)
M(9)	$0 \cdot 5915$ (9)	$0 \cdot 31715$ (15)	-9 (7)	6 (1)	53 (7)
M(10)	$0 \cdot 6180$ (13)	0.22243 (21)	152 (18)	3 (2)	-10 (12)
M(11)	$0 \cdot 5220$ (9)	0.13771 (14)	64 (9)	1 (1)	-114 (10)
M(12)	0.5488 (11)	0.04624 (16)	63 (11)	5 (2)	-31 (12)
$\mathrm{O}(1)$	0.648 (8)	0.0000	-0.4 (0.6)		
O(2)	$0 \cdot 251$ (11)	0.0290 (11)	08 (10)		
$\mathrm{O}(3)$	0882 (16)	00457 (33)	21 (1.6)		
$\mathrm{O}(4)$	$0 \cdot 402$ (11)	0.0923 (24)	$0 \cdot 7$ (0.9)		
O(5)	$0 \cdot 798$ (36)	$0 \cdot 1090$ (82)	$0 \cdot 1$ (3.1)		
O(6)	$0 \cdot 189$ (13)	$0 \cdot 1354$ (26)	$1 \cdot 1(1 \cdot 1)$		
O(7)	0.398 (11)	$0 \cdot 1886$ (24)	$0 \cdot 8(1.1)$		
$\mathrm{O}(8)$	0.978 (9)	$0 \cdot 2265$ (19)	$0.7(1.0)$		
O(9)	$0 \cdot 400$ (11)	$0 \cdot 2668$ (21)	$0.7(1.0)$		
$\mathrm{O}(10)$	0.732 (9)	$0 \cdot 2775$ (18)	$0 \cdot 2$ (0.7)		
$\mathrm{O}(11)$	$0 \cdot 283$ (12)	$0 \cdot 3152$ (28)	$1 \cdot 1$ (1.1)		
$\mathrm{O}(12)$	$0 \cdot 466$ (14)	$0 \cdot 3655$ (23)	$1 \cdot 1$ (1-1)		
$\mathrm{O}(13)$	$0 \cdot 275$ (11)	$0 \cdot 4076$ (23)	0.4 (1.0)		
O(14)	0.398 (6)	$0 \cdot 4681$ (14)	-0.2 (0.5)		
O (15)	0.773 (8)	$0 \cdot 4540$ (15)	-0.3 (0.6)		
O(16)	0.021 (14)	$0 \cdot 5000$	0.6 (1.6)		
O(17)	0.028	0.0000	0.7		
$\mathrm{O}(18)$	0.650	$0 \cdot 5000$	0.7		
$\mathrm{O}(19)$	0.090	0.0830	0.7		
$\mathrm{O}(20)$	0.090	$0 \cdot 1775$	0.7		
O(21)	0.030	$0 \cdot 2780$	0.7		
$\mathrm{O}(22)$	0.160	$0 \cdot 3610$	$0 \cdot 7$		
$\mathrm{O}(23)$	$0 \cdot 100$	0.4500	0.7		
O (24)	0.560	0.0480	0.7		
O (25)	0.512	$0 \cdot 1390$	0.7		
$\mathrm{O}(26)$	0.620	$0 \cdot 2230$	0.7		
$\mathrm{O}(27)$	0.580	$0 \cdot 3115$	$0 \cdot 7$		
$\mathrm{O}(28)$	0.582	0.4133	0.7		
O(29)	$0 \cdot 860$	$0 \cdot 1300$	$0 \cdot 7$		
$\mathrm{O}(30)$	0770	01725	0.7		
$\mathrm{O}(31)$	$0 \cdot 900$	$0 \cdot 3285$	$0 \cdot 7$		
$\mathrm{O}(32)$	0.830	0.3675	0.7		
O(33)	0.870	$0 \cdot 3890$	$0 \cdot 7$		

minimize the effects of uncertainties in the large F_{o} values brought about by extinction. The final R_{1} value for all $h k 0$ data is 0.088 .

Positional and thermal parameters for $L-\mathrm{Ta}_{2} \mathrm{O}_{5}$, as well as corresponding standard deviations estimated from the inverse matrix, are given in Table 2. Bond distances and angles, together with estimated standard deviations, are given in Table 3.

Table 3. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for the compound $L-\mathrm{Ta}_{2} \mathrm{O}_{5}$
Standard deviations are given in brackets and refer to the least significant digits. Primed atoms are related by x, \bar{y}, z.

M(1) Pentagonal bipyramid	
$\mathrm{M}(1)-\mathrm{O}(1)$	$2 \cdot 19$ (05) (1)
-O(2)	1.95 (08) (2)
-O(3)	$2 \cdot 00$ (13) (2)
-O(17)	1.96 (15) (2)
$\mathrm{O}(1)-\mathrm{O}(3)$	2.38 (13) (2)
$\mathrm{O}(3)-\mathrm{O}(2)$	2.39 (13) (2)
$\mathrm{O}(2)-\mathrm{O}\left(2^{\prime}\right)$	2.33 (13) (1)
$\mathrm{O}(17)-\mathrm{O}(1)$	3.07 (06) (2)
-O(2)	2.67 (07) (4)
-O(3)	2.85 (11) (4)
$\mathrm{O}(1)-\mathrm{O}(3)-\mathrm{O}(2)$	111 (6) (2)
$\mathrm{O}(3)-\mathrm{O}(2)-\mathrm{O}\left(2^{\prime}\right)$	107 (5) (2)
$\mathrm{O}(3)-\mathrm{O}(1)-\mathrm{O}\left(3^{\prime}\right)$	103 (4) (1)
M(2) Pentagonal bipyramid	
$\mathrm{M}(2)-\mathrm{O}(14)$	$2 \cdot 18$ (05) (2)
-O(15)	1.95 (06) (2)
-O(16)	$2 \cdot 14$ (09) (1)
-O(18)	1.96 (15) (2)
$\mathrm{O}(14)-\mathrm{O}(15)$	$2 \cdot 42$ (07) (2)
$\mathrm{O}(15)-\mathrm{O}(16)$	2.42 (08) (2)
$\mathrm{O}(14)-\mathrm{O}\left(14^{\prime}\right)$	2.57 (08) (1)
$\mathrm{O}(18)-\mathrm{O}(16)$	3.03 (09) (2)
-O(15)	2.81 (07) (4)
-O(14)	$2 \cdot 82$ (06) (4)
$\mathrm{O}(14)-\mathrm{O}(15)-\mathrm{O}(16)$	116 (4) (2)
$\mathrm{O}(15)-\mathrm{O}(14)-\mathrm{O}\left(14^{\prime}\right)$	104 (3) (2)
$\mathrm{O}(15)-\mathrm{O}(16)-\mathrm{O}\left(15^{\prime}\right)$	101 (4) (1)
M(3) Pentagonal bipyramid	
$\mathrm{M}(3)-\mathrm{O}(2)$	$2 \cdot 60$ (09) (1)
-O(3)	$1 \cdot 98$ (13) (1)
-O(4)	$2 \cdot 13$ (07) (1)
-O(5)	1.92 (26) (1)
-O(6)	$2 \cdot 14$ (11) (1)
-O(19)	1.97 (15) (2)
$\mathrm{O}(2)-\mathrm{O}(3)$	2.39 (13) (1)
$\mathrm{O}(3)-\mathrm{O}(5)$	$2 \cdot 67$ (36) (1)
$\mathrm{O}(5)-\mathrm{O}(6)$	$2 \cdot 62$ (26) (1)
$\mathrm{O}(6)-\mathrm{O}(4)$	2.21 (13) (1)
$\mathrm{O}(4)-\mathrm{O}(2)$	$2 \cdot 73$ (13) (1)
$\mathrm{O}(19)-\mathrm{O}(2)$	$3 \cdot 11$ (09) (2)
-O(3)	2.77 (10) (2)
-O(4)	$2 \cdot 79$ (07) (2)
-O(5)	$2 \cdot 89$ (20) (2)
-O(6)	$2 \cdot 95$ (10) (2)
$\mathrm{O}(2)-\mathrm{O}(3)-\mathrm{O}(5)$	118 (7)
$\mathrm{O}(3)-\mathrm{O}(5)-\mathrm{O}(6)$	101 (9)
$\mathrm{O}(5)-\mathrm{O}(6)-\mathrm{O}(4)$	105 (8)
$\mathrm{O}(6)-\mathrm{O}(4)-\mathrm{O}(2)$	122 (4)
$\mathrm{O}(4)-\mathrm{O}(2)-\mathrm{O}(3)$	94 (5)
M(4) Octahedron	
$\mathrm{M}(4)-\mathrm{O}(6)$	$2 \cdot 14$ (10) (1)
-O(7)	$2 \cdot 17$ (07) (1)

Table 3 (cont.)

$\mathrm{M}(4)-\mathrm{O}(8)$	1.78 (08) (1)
-O(30)	1.83 (06) (1)
-O(20)	1.98 (15) (2)
$\mathrm{O}(6)-\mathrm{O}(7)$	$2 \cdot 52$ (14) (1)
$\mathrm{O}(7)-\mathrm{O}(8)$	3.05 (10) (1)
$\mathrm{O}(8)-\mathrm{O}(30)$	2.54 (11) (1)
$\mathrm{O}(30)-\mathrm{O}(6)$	3.02 (11) (1)
$\mathrm{O}(20)-\mathrm{O}(6)$	$2 \cdot 67$ (09) (2)
-O(7)	2.79 (07) (2)
-O(8)	$2 \cdot 87$ (08) (2)
-O(30)	$2 \cdot 80$ (06) (2)
$\mathrm{O}(6)-\mathrm{O}(7)-\mathrm{O}(8)$	89 (4)
$\mathrm{O}(7)-\mathrm{O}(8)-\mathrm{O}(30)$	91 (3)
$\mathrm{O}(8)-\mathrm{O}(30)-\mathrm{O}(6)$	90 (2)
$\mathrm{O}(30)-\mathrm{O}(6)-\mathrm{O}(7)$	91 (4)
M(5) Octahedron	
$\mathrm{M}(5)-\mathrm{O}(8)$	$2 \cdot 05$ (08) (1)
-O(9)	2.09 (07) (1)
-O(10)	$2 \cdot 11$ (06) (1)
-O(11)	$2 \cdot 11$ (10) (1)
-O(21)	1.97 (15) (2)
$\mathrm{O}(9)-\mathrm{O}(11)$	2.07 (14) (1)
$\mathrm{O}(11) \mathrm{O}(10)$	$3 \cdot 19$ (11) (1)
$\mathrm{O}(10)-\mathrm{O}(8)$	$2 \cdot 59$ (10) (1)
$\mathrm{O}(8)-\mathrm{O}(9)$	$3 \cdot 11$ (10) (1)
$\mathrm{O}(21)-\mathrm{O}(8)$	$2 \cdot 88$ (08) (2)
-O(9)	3.05 (07) (2)
-O(10)	$2 \cdot 71$ (06) (2)
-O(11)	$2 \cdot 93$ (10) (2)
$\mathrm{O}(8)-\mathrm{O}(9)-\mathrm{O}(11)$	101 (4)
$\mathrm{O}(9)-\mathrm{O}(11)-\mathrm{O}(10)$	81 (3)
$\mathrm{O}(11)-\mathrm{O}(10)-\mathrm{O}(8)$	84 (4)
$\mathrm{O}(10)-\mathrm{O}(8)-\mathrm{O}(9)$	94 (3)

M(6) Pentagonal bipyramid

M(6) -O(11)	2.08 (11) (1)
-O(12)	1.94 (09) (1)
-O(13)	1.95 (09) (1)
-O(31)	$2 \cdot 14$ (07) (1)
-O(33)	$2 \cdot 11$ (07) (1)
-O(22)	1.96 (15) (2)
$\mathrm{O}(11)-\mathrm{O}(12)$	$2 \cdot 40$ (14) (1)
$\mathrm{O}(12)-\mathrm{O}(13)$	2.04 (13) (1)
$\mathrm{O}(13)-\mathrm{O}(33)$	$2 \cdot 65$ (10) (1)
$\mathrm{O}(33)-\mathrm{O}(31)$	2.46 (11) (1)
$\mathrm{O}(31)-\mathrm{O}(11)$	$2 \cdot 46$ (10) (1)
$\mathrm{O}(22)-\mathrm{O}(11)$	$2 \cdot 80$ (10) (2)
-O(12)	2.76 (08) (2)
-O(13)	2.81 (09) (2)
-O(31)	$2 \cdot 86$ (07) (2)
-O(33)	$2 \cdot 90$ (07) (2)
$\mathrm{O}(11)-\mathrm{O}(12)-\mathrm{O}(13)$	114 (5)
$\mathrm{O}(12)-\mathrm{O}(13)-\mathrm{O}(33)$	110 (5)
$\mathrm{O}(13)-\mathrm{O}(33)-\mathrm{O}(31)$	102 (3)
$\mathrm{O}(33)-\mathrm{O}(31)-\mathrm{O}(11)$	107 (4)
$\mathrm{O}(31)-\mathrm{O}(11)-\mathrm{O}(12)$	106 (5)

M(7) Octahedron

$\mathrm{M}(7)-\mathrm{O}(13)$	$2.02(09)(1)$
$-\mathrm{O}(14)$	$1.93(05)(1)$
$-\mathrm{O}(15)$	$2 \cdot 12(05)(1)$
$-\mathrm{O}(16)$	$2.08(03)(1)$
$-\mathrm{O}(23)$	$1 \cdot 96(10)(2)$
$\mathrm{O}(13)-\mathrm{O}(14)$	$2 \cdot 57(11)(1)$
$\mathrm{O}(14)-\mathrm{O}(16)$	$2.69(09)(1)$
$\mathrm{O}(15)-\mathrm{O}(13)$	$3.12(10)(1)$
$\mathrm{O}(16)-\mathrm{O}(15)$	$2 \cdot 42(08)(1)$
$\mathrm{O}(23)-\mathrm{O}(13)$	$2.83(08)(2)$
$-\mathrm{O}(14)$	$2.80(06)(2)$

Table 3 (cont.)

$\mathrm{O}(23)-\mathrm{O}(15)$	$2 \cdot 83$ (06) (2)
-O(16)	$2 \cdot 86$ (06) (2)
$\mathrm{O}(13)-\mathrm{O}(14)-\mathrm{O}(16)$	101 (2)
$\mathrm{O}(14)-\mathrm{O}(16)-\mathrm{O}(15)$	101 (2)
$\mathrm{O}(16)-\mathrm{O}(15)-\mathrm{O}(13)$	90 (2)
$\mathrm{O}(15)-\mathrm{O}(13)-\mathrm{O}(14)$	68 (3)
M(8) Pentagonal bipyramid	
$\mathrm{M}(8)-\mathrm{O}(12)$	1.99 (10) (1)
-O(13)	1.97 (07) (1)
-O(14)	$2 \cdot 56$ (06) (1)
-O(15)	2.04 (06) (1)
-O(33)	1.99 (07) (1)
-O(28)	1.96 (10) (2)
$\mathrm{O}(12)-\mathrm{O}(13)$	$2 \cdot 14$ (13) (1)
$\mathrm{O}(13)-\mathrm{O}(14)$	$2 \cdot 57$ (11) (1)
$\mathrm{O}(14)-\mathrm{O}(15)$	2.42 (07) (1)
$\mathrm{O}(15)-\mathrm{O}(33)$	$2 \cdot 71$ (10) (1)
$\mathrm{O}(33)-\mathrm{O}(12)$	$2 \cdot 66$ (11) (1)
$\mathrm{O}(28)-\mathrm{O}(12)$	$2 \cdot 80$ (09) (2)
-O(13)	2.74 (07) (2)
-O(14)	$3 \cdot 18$ (08) (2)
-O(15)	$2 \cdot 83$ (07) (2)
-O(33)	2.83 (07) (2)
$\mathrm{O}(12)-\mathrm{O}(13)-\mathrm{O}(14)$	126 (4)
$\mathrm{O}(13)-\mathrm{O}(14)-\mathrm{O}(15)$	94 (3)
$\mathrm{O}(14)-\mathrm{O}(15)-\mathrm{O}(33)$	116 (3)
$\mathrm{O}(15)-\mathrm{O}(33)-\mathrm{O}(12)$	91 (2)
$\mathrm{O}(33)-\mathrm{O}(12)-\mathrm{O}(13)$	107 (5)

M(9) Octahedron	
$\mathrm{M}(9)-\mathrm{O}(10)$	1.83 (07) (1)
-O(11)	1.92 (08) (1)
-O(12)	$2 \cdot 16$ (10) (1)
-O(31)	$1 \cdot 99$ (06) (1)
-O(27)	$1 \cdot 97$ (10) (2)
$\mathrm{O}(10)-\mathrm{O}(11)$	$3 \cdot 19$ (11) (1)
$\mathrm{O}(11)-\mathrm{O}(12)$	$2 \cdot 40$ (14) (1)
$\mathrm{O}(12)-\mathrm{O}(31)$	$3 \cdot 11$ (12) (1)
$\mathrm{O}(31)-\mathrm{O}(10)$	$2 \cdot 32$ (11) (1)
$\mathrm{O}(27)-\mathrm{O}(10)$	2.57 (07) (2)
-O(11)	$2 \cdot 70$ (07) (2)
-O(12)	3.06 (10) (2)
-O(31)	$2 \cdot 88$ (07) (2)
$\mathrm{O}(10)-\mathrm{O}(11)-\mathrm{O}(12)$	89 (4)
$\mathrm{O}(11)-\mathrm{O}(12)-\mathrm{O}(31)$	89 (4)
$\mathrm{O}(12)-\mathrm{O}(31)-\mathrm{O}(10)$	93 (3)
$\mathrm{O}(31)-\mathrm{O}(10)-\mathrm{O}(11)$	89 (3)

$\mathrm{M}(10)$ Pentagonal bipyramid	
$\mathrm{M}(10)-\mathrm{O}(7)$	$1 \cdot 95(09)(1)$
$-\mathrm{O}(8)$	$2 \cdot 26(06)(1)$
$-\mathrm{O}(9)$	$2 \cdot 26(08)(1)$
$-\mathrm{O}(10)$	$2 \cdot 33(08)(1)$
$-\mathrm{O}(30)$	$2 \cdot 24(08)(1)$
$-\mathrm{O}(26)$	$1.95(10)(2)$
$\mathrm{O}(7)-\mathrm{O}(9)$	$3 \cdot 19(13)(1)$
$\mathrm{O}(9)-\mathrm{O}(10)$	$2 \cdot 12(09)(1)$
$\mathrm{O}(10)-\mathrm{O}(8)$	$2 \cdot 59(10)(1)$
$\mathrm{O}(8)-\mathrm{O}(30)$	$2 \cdot 54(11)(1)$
$\mathrm{O}(26)-\mathrm{O}(7)$	$2 \cdot 77(08)(2)$
$-\mathrm{O}(8)$	$2 \cdot 97(07)(2)$
$-\mathrm{O}(9)$	$2 \cdot 99(08)(2)$
$-\mathrm{O}(10)$	$3.03(08)(2)$
$-\mathrm{O}(30)$	$2 \cdot 98(08)(2)$
$\mathrm{O}(7)-\mathrm{O}(9)-\mathrm{O}(10)$	$101(4)$
$\mathrm{O}(9)-\mathrm{O}(10)-\mathrm{O}(8)$	$115(4)$
$\mathrm{O}(10)-\mathrm{O}(8)-\mathrm{O}(30)$	$112(4)$
$\mathrm{O}(8)-\mathrm{O}(30)-\mathrm{O}(7)$	$105(4)$
$\mathrm{O}(30)-\mathrm{O}(7)-\mathrm{O}(9)$	$106(4)$

M(11) Pentagonal bipyramid

$\mathrm{M}(11)-\mathrm{O}(4)$	1.99 (10) (1)
-O(5)	2.06 (26) (1)
-O(6)	$2 \cdot 08$ (09) (1)
-O(7)	$2 \cdot 19$ (10) (1)
-O(30)	$2 \cdot 09$ (07) (1)
-O(25)	1.96 (10) (2)
$\mathrm{O}(4)-\mathrm{O}(5)$	2.61 (25) (1)
$\mathrm{O}(5)-\mathrm{O}(30)$	$2 \cdot 50$ (34) (1)
$\mathrm{O}(30)-\mathrm{O}(7)$	2.41 (10) (1)
$\mathrm{O}(7)-\mathrm{O}(6)$	$2 \cdot 52$ (14) (1)
$\mathrm{O}(6)-\mathrm{O}(4)$	$2 \cdot 21$ (13) (1)
$\mathrm{O}(25)-\mathrm{O}(4)$	$2 \cdot 81$ (09) (2)
-O(5)	$2 \cdot 90$ (20) (2)
-O(6)	2.81 (08) (2)
-O(7)	2.88 (09) (2)
-O(30)	2.87 (07) (2)
$\mathrm{O}(4)-\mathrm{O}(6)-\mathrm{O}(7)$	111 (4)
$\mathrm{O}(6)-\mathrm{O}(7)-\mathrm{O}(30)$	106 (5)
$\mathrm{O}(7)-\mathrm{O}(30)-\mathrm{O}(5)$	110 (6)
$\mathrm{O}(30)-\mathrm{O}(5)-\mathrm{O}(4)$	102 (10)
$\mathrm{O}(5)-\mathrm{O}(4)-\mathrm{O}(6)$	110 (8)

M(12) Octahedron

$\mathrm{M}(12)-\mathrm{O}(1)$	$1.98(02)(1)$
$-\mathrm{O}(2)$	$1.99(08)(1)$

Fig. 1. A (001) projection of the structure of $L-\mathrm{Ta}_{2} \mathrm{O}_{5}$. There are three distortion planes in this unit cell located at d_{1}, d_{2} and d_{3}. The fourth position at d_{4} is related by symmetry but is not used in this unit cell. Black dots represent metal atoms and shaded areas oxygen coordination polyhedra.

Table 3 (cont.)

$\mathrm{M}(12)-\mathrm{O}(3)$	$2.10(10)(1)$
$-\mathrm{O}(4)$	$2.07(09)(1)$
$-\mathrm{O}(24)$	$1.96(08)(2)$
$\mathrm{O}(1)-\mathrm{O}(2)$	$2.75(09)(1)$
$\mathrm{O}(2)-\mathrm{O}(4)$	$2.73(13)(1)$
$\mathrm{O}(4)-\mathrm{O}(3)$	$3.02(12)(1)$
$\mathrm{O}(3)-\mathrm{O}(1)$	$2 \cdot 38(13)(1)$
$\mathrm{O}(24)-\mathrm{O}(1)$	$2.81(06)(2)$
$-\mathrm{O}(2)$	$2.86(07)(2)$
$-\mathrm{O}(3)$	$2 \cdot 82(09)(2)$
$-\mathrm{O}(4)$	$2 \cdot 82(09)(2)$
$\mathrm{O}(1)-\mathrm{O}(2)-\mathrm{O}(4)$	$94(3)$
$\mathrm{O}(2)-\mathrm{O}(4)-\mathrm{O}(3)$	$81(3)$
$\mathrm{O}(4)-\mathrm{O}(3)-\mathrm{O}(1)$	$82(3)$
$\mathrm{O}(3)-\mathrm{O}(1)-\mathrm{O}(2)$	$103(3)$

Description of the structure

The ideal structure for $L-\mathrm{Ta}_{2} \mathrm{O}_{5}$ can be generated from a chain of 8 edge-sharing pentagons which is regularly folded in the manner desribed by Roth \& Stephenson (1969). The plane group of the (001) projection of this ideal structure is $p g m$, and the ideal unit cell contains 22 metal atoms and 58 oxygen atoms.

The real structure of $L-\mathrm{Ta}_{2} \mathrm{O}_{5}$ differs from the ideal structure by the way in which certain pentagonal bipyramids accommodate the distortions imposed upon them in the ideal structure by the folding process. This process can involve a reduction in the coordination number of some metal atoms. The real unit cell of $L-\mathrm{Ta}_{2} \mathrm{O}_{5}$ contains 22 metal atoms and 55 oxygen atoms; therefore three metal atoms per unit cell reduce the coordination number from seven (in the ideal case) to six (in the real case).

In the structure of $\mathrm{Ta}_{22} \mathrm{~W}_{4} \mathrm{O}_{67}$ (Stephenson \& Roth, 1971a), the location of such a reduction, or a distortion plane, was associated with a splitting of one of the oxygen peaks, whereas in the structure of $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ (Stephenson \& Roth, 1971b), the distortion planes were located where oxygen peak heights were lower than average. In the structure of $L-\mathrm{Ta}_{2} \mathrm{O}_{5}$, both of these identifying features are observed: two atomic sites, $O(30)$ and $O(31)$, which are normally fully occupied in the ideal structure are only partially occupied in the real structure. Also, atomic sites $\mathrm{O}(5)$
and $\mathrm{O}(33)$ which would be single peaks in the ideal structure of $\mathrm{Ta}_{2} \mathrm{O}_{5}$, appear as doublets in the real structure viz. $\mathrm{O}(5), \mathrm{O}(29)$ and $\mathrm{O}(33), \mathrm{O}(32)$.

Consider the environment of tantalum atom $\mathrm{M}(11)$. When $\mathrm{O}(5)$ and $\mathrm{O}(30)$ are occupied, $\mathrm{M}(11)$ has pentagonal bipyramidal coordination. When $\mathrm{O}(5)$ and $\mathrm{O}(30)$ are not occupied but $O(29)$ is occupied, $M(11)$ has a distorted octahedral configuration. A similar argument

(a)

(b)

(c)

Fig. 2. (a) A chain of edge-sharing regular pentagons - a basic building unit in the representation of ideal structures of phases in the $\mathrm{Ta}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3}$ system. (b) The ideal $\mathrm{M}_{6} \mathrm{O}_{16}$ structure formed by a fusion of three chains, showing the formation of octahedral sites between adjacent chains. Dots represent metal atoms with superimposed oxygen atoms. If this structure is reflected about the (110) plane a 'herringbone weave' effect is produced [as in Fig. 2(c)] with a subsequent reduction in the oxygen:metal ratio. (c) The ideal structure of $\mathrm{M}_{10} \mathrm{O}_{26}$, the smallest basic structure, consisting of five UO_{3}-type subcells (each of length b^{\prime}).

Table 4. Correlation coefficients, $\varrho_{i j}$, for metal-metal positional parameter interactions $x_{i}-x_{j}$ type interactions are shown below the $\varrho_{t i}$ diagonal while $y_{i}-y_{j}$ type interactions are found above this diagonal. There are

	2	3	4	5	6	7	8	9	10	11	12
2	$1 \cdot 0$			-	-						
3	0.06	$1 \cdot 0$	-0.01	$0 \cdot 19$	$0 \cdot 11$	-0.14	$0 \cdot 30$	-0.01	$0 \cdot 18$	0.10	0.03
4	$0 \cdot 24$	$0 \cdot 27$	1.0	-0.13	-0.09	0.38	$0 \cdot 11$	$0 \cdot 20$	0.02	0.18	0.12
5	0.15	$0 \cdot 17$	$0 \cdot 09$	1.0	$0 \cdot 22$	-0.24	0.06	0.25	$0 \cdot 31$	-0.11	-0.25
6	$0 \cdot 19$	$0 \cdot 10$	$0 \cdot 42$	0.08	1.0	0.05	-0.01	0.07	$0 \cdot 12$	0.41	-0.15
7	$0 \cdot 23$	0.03	$0 \cdot 10$	$0 \cdot 30$	0.04	$1 \cdot 0$	0.07	$0 \cdot 16$	-0.16	0.32	0.04
8	0.03	$0 \cdot 43$	0.54	-0.03	0.38	$0 \cdot 10$	$1 \cdot 0$	-0.10	$0 \cdot 21$	0.12	-0.16
9	$0 \cdot 20$	$0 \cdot 15$	$0 \cdot 40$	0.34	$0 \cdot 34$	0.07	-0.02	1.0	$0 \cdot 13$	-0.17	-0.16
10	0.06	$0 \cdot 13$	$0 \cdot 49$	$0 \cdot 16$	$0 \cdot 35$	-0.01	0.33	0.25	$1 \cdot 0$	-0.12	0.05 -0.34
11	$0 \cdot 17$	0.38	$0 \cdot 58$	$0 \cdot 11$	$0 \cdot 19$	$0 \cdot 12$	$0 \cdot 42$	0.54	$0 \cdot 30$	1.0	-0.34 0.19
12	$0 \cdot 41$	$0 \cdot 20$	$0 \cdot 30$	$0 \cdot 36$	$0 \cdot 14$	0.52	$0 \cdot 17$	$0 \cdot 25$	0.01	0.25	$1 \cdot 0$

applies to $\mathrm{M}(6)$, which has pentagonal bipyramidal coordination when $\mathrm{O}(31)$ and $\mathrm{O}(33)$ are both occupied and distorted octahedral coordination when $\mathrm{O}(32)$ is occupied. Since there are two asymmetric units in the complete unit cell, there are four available sites per unit cell for distortion plane locations. The three distortion planes are therefore statistically distributed over these four locations. The unit cell of $L-\mathrm{Ta}_{2} \mathrm{O}_{5}$ (Fig. 1) is therefore an average unit cell in which the distortion planes are shown as d_{1}, d_{2}, and d_{3}. The remaining location d_{4} is not utilized in this unit cell, although it would be used in adjacent unit cells. The atomic site occupancies for $\mathrm{O}(5)$ and $\mathrm{O}(29)-\mathrm{O}(33)$, given in Table 2, agree with the observed peak heights.
Correlation coefficients for $x-x$ and $y-y$ type parameter interactions for the metal atoms are given in Table 4 and were calculated by the ORFLS (Busing, Martin \& Levy, 1962) program. The comparatively low magnitudes of these interactions (maximum $\varrho_{i j}$ value, 0.58) can be attributed to the use of more extensive data to determine and refine the structural parameters.

Thermal equilibration and structural change

Each compound in the series $\mathrm{Ta}_{2} \mathrm{O}_{5}-11 \mathrm{Ta}_{2} \mathrm{O}_{5} .4 \mathrm{WO}_{3}$ has a structure that is dependent on its thermal history. After extensive heat treatment the structure of any member of the above series reaches its equilibrium state and can no longer be altered by annealing. Details of such thermally equilibrated structures have been published in the preceding papers, and it is now

Fig. 3. A schematic representation of the distribution of distortion planes along the \mathbf{b} direction of some structures that have reached equilibrium. The distortion plane locations are marked with crosses. The multiplicity, m, refers to the number of UO_{3}-type subcells in the unit cell in which the distortion plane distribution is shown.
possible to discuss the structural changes that occur between the original formation of the substance and its final equilibrated state.

Consider the case of pure $\mathrm{Ta}_{2} \mathrm{O}_{5}$. Pure $\mathrm{Ta}_{2} \mathrm{O}_{5}$ can be prepared by heating tantalum metal in air or oxygen at $600^{\circ} \mathrm{C}$. Powder photographs of this semi-amorphous $\mathrm{Ta}_{2} \mathrm{O}_{5}$ resemble those of $\mathrm{U}_{3} \mathrm{O}_{8}$ and the structure presumably contains chains of pentagonal bipyramids [see Fig. 2(a)] of varying lengths, which have begun to fuse together as shown in Fig. 2(b). Further heating of the substance, just below its transition point, induces crystallization and in order to reduce the oxygen : metal ratio to below $2 \cdot 667$:1, which would be the value if the chains remained linear as in Fig. $2(b)$, a folding or herring-bone weave dictates the structural trend. This herring-bone weave is obtained by reflecting the structure across the (110) plane. The smallest structural unit in the $\mathrm{Ta}_{2} \mathrm{O}_{5}-11 \mathrm{Ta}_{2} \mathrm{O}_{5} .4 \mathrm{WO}_{3}$ series is shown in Fig. 2(c). The unit cell, based on $5 \mathrm{UO}_{3}$-type subcells, has composition $\mathrm{M}_{10} \mathrm{O}_{26}$ (where M represents a metal atom).
$L-\mathrm{Ta}_{2} \mathrm{O}_{5}$ initially displays a reasonably sharp powder photograph with superlattice lines that can be indexed on the basis of a $14 \mathrm{UO}_{3}$-type subcell. Prolonged heating for two weeks at $1350^{\circ} \mathrm{C}$ gradually changes the multiplicity of the unit cell to 11. A reduction towards $8 \mathrm{UO}_{3}$-type subcells can only be obtained by adding impurity such as $\mathrm{Al}_{2} \mathrm{O}_{3}$ or WO_{3}.

The ideal composition of the 14 -subcell structure is $\mathrm{M}_{28} \mathrm{O}_{74}$. Since the actual composition is $\mathrm{M}_{28} \mathrm{O}_{70}$ (i.e. $\mathrm{Ta}_{2} \mathrm{O}_{5}$) there will be four distcrtion planes per unit cell in the real 14 -subcell structure, i.e. $0 \cdot 286$ distortion planes per subcell. The crystal structure determination of the 11 -subcell structure of $\mathrm{Ta}_{2} \mathrm{O}_{5}$ has shown that there are three distortion planes per unit cell, i.e. 0.273 distortion planes per subcell. Thus in changing from a 14 -subcell to an 11 -subcell structure, $\mathrm{Ta}_{2} \mathrm{O}_{5}$ has undergone a decrease in the concentration of distortion planes. Some distortions have been annealed out by the heat treatment.

A similar trend is observed with every other member of the $\mathrm{Ta}_{2} \mathrm{O}_{5}-11 \mathrm{Ta}_{2} \mathrm{O}_{5} .4 \mathrm{WO}_{3}$ series. Any given compound contains more 'long chains' initially than it does after equilibration. For example, the compound $\mathrm{Ta}_{22} \mathrm{~W}_{4} \mathrm{O}_{67}$ is made up of 5 subcell and 8 subcell blocks in the ratio $1: 1$, and the pentagon chains are respectively 4 and 6 pentagons long in each case. However, before equilibration there is a greater number of 8 subcell blocks than there are 5 subcell blocks, which corresponds to a higher concentration of distortion planes.

Table 5. Data concerning the distribution of distortion planes along the [010] direction

Compound	Number of subcells	Distance within doublet	Distance between doublets
$11 \mathrm{Ta}_{2} \mathrm{O}_{5} .4 \mathrm{WO}_{3}$	13	8	None

There is a definite tendency for distortion planes to pair. For the purposes of Table 5, the distances between distortion planes have been measured between the positions that oxygen atoms would have occupied in the fully-oxygenated or (non-existent) ideal structures. Thus distortion planes pair at distance between 6 and 8 ångström units. In addition to these pairs single distortion planes are distributed fairly evenly between the doublets. These can be seen in Fig. 3.

The structural consequences of thermal annealing are as follows:

1. When a member of the series $\mathrm{Ta}_{2} \mathrm{O}_{5}-11 \mathrm{Ta}_{2} \mathrm{O}_{5} .4 \mathrm{WO}_{3}$ is first formed its structure is made up of a sequence of herring-boned chains of fused pentagons. The linear portions of any chain may contain $4,6,8, \ldots, 2 n$ edgeshared pentagons which result in $5,8,11, \ldots,(3 n / 2)-1$ basic subcell blocks. Initially, a large number of distortion planes are distributed evenly and mostly in pairs.
2. As (heat) energy is supplied to the system the lengths of the straight portions of the chains are decreased, the number of distortion planes is decreased and the number of pairs of distortion planes is decreased. These features are all interrelated and reflect changes in structure.

Table 5 and Fig. 3 both illustrate that as the oxygen: metal ratio decreases, the concentration of distortion planes increases and therefore the distances between the planes decreases. The planes are distributed mainly in pairs with occasional single planes distributed evenly between the pairs. As the concentration of distortion planes increases, i.e. at the high tantala end
of the $\mathrm{Ta}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3}$ system, it is possible to reverse the annealing process and, by slow cooling, increase the number of larger subcell blocks. The region over which this reversal applies in the $\mathrm{Ta}_{2} \mathrm{O}_{5}-\mathrm{Al}_{2} \mathrm{O}_{3}$ system is slightly larger since this latter system contains higher concentrations of distortion planes than the corresponding regions in the $\mathrm{Ta}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3}$ system. It appears, therefore, that when distortion planes occur frequently it is possible to pair the odd distortion plane with one introduced by an overall lengthening of the distances between the pairs.

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Report ORNL-TM-305, Oak Ridge National Laboratory, Tennessee.
Hamilton, W. C. (1965). Acta Cryst. 18, 502.
Lagergren, S. \& Magnéli, A. (1952). Acta Chem. Scand. 6, 444.
laves, F. \& Petter, W. (1964). Helv. Physica Acta, 32, 617.

Lehovic, K. (1964). J. Less-Common Metals, 7, 397.
Moser, R. (1965). Schweiz. min. petrogr. Mitt. 45, [1], 35.
Roth, R. S. \& Stephenson, N. C. (1969). The Chemistry of Extended Defects in Non-Metallic Solids. Amsterdam: North Holland.
Roth, R. S. \& Waring, J. L. (1971). To be published. Stephenson, N. C. \& Roth, R. S. (1971a). Acta Cryst. B27, 1010.

Stephenson, N. C. \& Roth, R. S. (1971b). Acta Cryst. B27, 1018.

Waring, J. L. \& Roth. R, S. (1958). J. Res. Nat. Bur. Stand. 72, 175.

Acta Cryst. (1971). B27, 1044

X-ray Study of the Structural and Ionic Configuration of the $\mathrm{CoMnCrO}_{4}$ Spinel

By D. K. Kulkarni and Chintamani Mande
Department of Physics, Nagpur University, Nagpur, India

(Received 23 July 1970)

Abstract

A new spinel CoMnCrO 4 has been synthesized. Its crystal structure has been determined by the powder method. It is found that this compound is cubic with lattice constant $a=8.34 \pm 0.02 \AA$. The oxygen ion parameter u in the spinel has been calculated from the intensities of various lines in the powder patterns and is found to be $0 \cdot 386 \pm 0.002$. The K-absorption edges of cobalt, manganese and chromium have been recorded photographically in this spinel, using a bent crystal X-ray spectrograph. The positions of these edges have been compared with those in some well-known compounds. The comparison shows that the oxidation states of the manganese, chromium and cobalt ions in this spinel are two, three and three respectively. Combining the structural properties and the X-ray spectroscopic results, the charge and site distribution in the spinel is found to be $\mathrm{Mn}^{2+}\left[\mathrm{Co}^{3+} \mathrm{Cr}^{3+}\right] \mathrm{O}_{4}^{2-}$.

Introduction

The manganite spinels have attracted much attention in recent years because of their wide use in industry.

These oxidic spinels have given rise to much discussion (Kshirsagar \& Biswas, 1967) as to their valency states and distribution of the cations in the lattice. Precise information about the charge and site distribution is

[^0]: * Permanent address: School of Chemistry, University of New South Wales, Sydney, Australia.

[^1]: these data to yield the set of observed structure factors listed in Table 1. Atomic scattering curves and computer programs were the same as described previously (Stephenson \& Roth, 1971a).

